Blow-up set for a semilinear heat equation with small diffusion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial blow-up solution of a semilinear heat equation

We study the existence and uniqueness of a maximal solution of equation ut − ∆u + f(u) = 0 in Ω× (0,∞), where Ω is a domain with a non-empty compact boundary, which satisfies u = g on ∂Ω × (0,∞), assuming that g and f are given continuous functions and f is also convex, nondecreasing, f(0) = 0 and verifies Keller-Osserman condition. We show that if the boundary of Ω satisfies the parabolic Wien...

متن کامل

Blow-up of Solutions of a Semilinear Heat Equation with a Memory Term

where u is the temperature, d is the diffusion coefficient, and the integral term represents the memory effect in the material. The study of this type of equations has drawn a considerable attention, see [3, 4, 10, 12, 13]. From a mathematical point of view, one would expect the integral term to be dominated by the leading term in the equation. Therefore, the theory of parabolic equations appli...

متن کامل

Blow-up of Solutions of a Semilinear Heat Equation with a Visco-elastic Term

In this work we consider an initial boundary value problem related to the equation ut −∆u+ ∫ t 0 g(t− s)∆u(x, s)ds = |u|p−2u and prove, under suitable conditions on g and p, a blow-up result for solutions with negative or vanishing initial energy. This result improves an earlier one by the author. Mathematics Subject Classification (2000). 35K05 35K65.

متن کامل

Blow up of Solutions with Positive Initial Energy for the Nonlocal Semilinear Heat Equation

In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.

متن کامل

Local existence and blow up in a semilinear heat equation with the Bessel operator

In this work we consider an initial one-point boundary value problem to the heat equation with the Bessel operator ut − (uxx + 1 xux) = |u| p−2u. We first prove a local existence result. Then we show that the solution blows up in finite time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2010

ISSN: 0022-0396

DOI: 10.1016/j.jde.2010.03.028